The addition of this genus to the Dendrocrinites suggests that, after all, Thenarocrinus, to which it is so closely allied, may find more fitting companionship with that family-party than with the somewhat peculiar Curabocrinus. The latter is in truth a crabbed musociable animal, whose nature, throngh the kindness of my Canadian friend; is now becoming better known to me.

> EXPLANATION OF PLATE XII.
> Mastigocrinus loreus, gen. et sp. nov.
> Fig. 1. The smaller specimen in the Dudley Museum.
> Fig. 183 Mason College.
> Fig. 3. 57048 B.M.

From a photograph of the specimens, about $\frac{8}{2}$ larger than nature.
XXXII.-British Fossil Crinoids.-VIII. Cyathocrinus: C. acinotubus, Ang., and C. vallatus, sp. nov., Wenlock Limestone. By F. A. Bather, M.A., F.G.S.
[Plate XIII.]

## Historical Introduction.

Tue name Cyathocrinus, or, as it used to be written, Cyathocrinites, was first used by J. S. Miller in 1821 on page 85 of his 'Natural Ilistory of the Crinoidea,' and is derived from кúaӨos, a cup; it has also been used by all subsequent writers on the subject. When, however, we enquire what particular form of Crinoid should be denoted by this name, we are speedily involved in difficulties. Fortunately Messrs. Wachsmuth and Springer, in their 'Revision of the Palæocrinoidea' (I. 79 ; Proc. 1879, p. 302), have dealt fully with this snlject, and their conclusions accord with common sense and with the rules of nomenclature. There are only a few points in which insufficient acquaintance with European material or European literature has led them astray. Since their work is, or should be, in the hands of every serious student of the Crimoids, a short explanation of the position adopted is all that is here requirel.

The four species referred by Miller to Cyathocrinus belong to four different genera, not to mention families and suborders. The first of thesc, C. planus, should of course be taken as the type: the others are now known as Tuxocrinus tuberculatus, Crotalocrinus mugosus ( $=C$. verrucosus, Schloth., sp.), and Parisocrinus quinquangularis.

As to C. plamus itself a little difticulty has arisen. Miller's
diagnosis of the genus (p. S5) is as follows:-" A Crinoidal animal, with a round or pentagonal column formed of numerous joints, having side arms procceding irregularly from it. On the summit adheres a saucer-shaped pelvis of five pieces, on which are placed in successive series, five costal plates, five scapula, and an intervening plate. From cach seapula proceeds one arm having two hands." The generic diagram facing p. 85 shows five pentagonal infrabasals, five basals, of which four are hexagonal (or pentagonal according to the angles formed by the upper sides of the infrabasals) and the fifth heptagonal (or hexagonal), five radials with a deep notch and an articular facet about one third the width of the plate, and a hexagonal anal $x$ in line with the rarlials. The figures of $C$. planus- $1,2,3,4,5,6,7,8,9,29,30$-show that this diagram was taken from that species, and bear out the diagnosis so far as the cup is concerned. Fig. 1, however, shows dichotomous pinnulate arms, and we know of no genus with arms of this character that has a dorsal cup like that shown in the diagram. 'The Austins' explanation of this was a probable one. 'They said (Monogr. Rec. \& Foss. Crinoidea, p. 61), "Miller's principal figure of this species cannot be depended on, as he appears to have taken the rays of the Taxocrinus longidactylus and placed them on the body of the C. planus." Un this Wachsmuth and Springer remarked (Revision, I. S1, footnote 2), "In supposing these to be the arms of 'Laxocrinus, Austin is certainly mistaken." Austin, however, applied the name Taxocrinus longidactylus to a specimen from the Carboniferous Limestone, near Walton Castle in Clevedon Bay, of which a figure had been published by George Cumberland \%. This very figure was referred by Miller (p. S6) to C. planus, and it is quite likely that the arms of his own fig. 1 were suggested by it. As a matter of fact there can be little doubt that Cumberland's figure represents a Scaphiocrinus with two primibrachs, although the pinnules are merely indicated in his drawing by rough shading. The same specimen was figured by Austin, pl. xi. fig. 3 a, under the name Poteriocrinus longidactylus (p. 88), thus showing that the name Taxocrinus was inserted by mistake on p. 61. Mr. W. P. Sladen, in his revision of the "Genus Poteriocrinus and allied forms" $\dagger$, left this species out in the cold; but Messrs. Wachsmuth and Springer referred it

[^0]to Scaphiocrinus (Rev. I. 114, Proc. 1879, p. 337). Miller's fig. 28 probably represents a Scytalecrinus, but the anal area is not very clear; at any rate it does not agree with the diagnosis or diagrams of Cyathocrinus. In his diagnosis of the genus Miller stated that the stem had irregular "side arms" or cirri, and such were represented in his tigures 26 and 27 ; but of these the Austins said (op. cit. p. 61), they " are not the side arms of any species of Cyathocrinus, 26 , being a small column, and 27, the column and side arms of a Poteriocrinus." No species agreeing in other respects with Miller's diagnosis is known to possess cirri of this nature.

The foregoing specimens were no doubt placed, as was the rest of J. S. Miller's valuable collection, in the Bristol Museum*, where they were shown to L. Agassiz by the then curator, Mr. S. Stutchbury $\dagger$. But, to the disgrace of the inhabitants of that town, all these treasures have been gradually allowed to disappear from that, their natural resting-place.

There was, however, another specimen figured by Miller (figs. 29 and 30 ), which was said by him (p. S7) to be "in the Ashmolean Muscum at Oxford." The drawings agree perfectly with the generic diagnosis and diagram, and this specimen would be the best to take as the type of the species. Unfortunately, in the transfer from the Ashmolean to the new Museum at Oxford, this, with other important specimens, appears to have been mislaid, and all search for it has up till now been fruitless. It were to be wished that those in charge of some of our muscums would remember that they are responsible, not merely to their immediate employers, not to the town, nor even to the nation, but to the whole world now and to come.
J. Phillips, in his 'Geology of Yorkshire' (1836), did not rocognize U'. planus. He figured, however, under the name C. distortus (vol. ii. p. 206, pl. iii. fig. 34), a specimen that was obviously of the same species as Miller's figs. 29 and 30. The Austins appear to have studied Miller's type specimens before they were 'conveyed' from the Musemm of the Bristol Insiitution, and they retained the species C. planus, figuring (op. cit. pl. vii. fig. $4 c, d$ ) a specimen which was in all probability the original of the cup in Miller's fig. 1, as well as a specimen ( $p$ l. vii. fig. $4 e$ ) probably the same as that figured by Phillips for C. distortus, which species they con-

[^1]sidered as a swn mym of co. phonus. There is theretore no ditheulty in deciding what Miller meant by C.planus, and there should omsequently be no diftionly in di-tinguishing the genus Cortherinus.

Before learinge (? fanus. homever, it mar be as well to correct a few mistañes made by the earlier writers, lest they should arain prove cause of confusion.

Millers erroneous ascription of cirri to the species has already been noted. With rezard to the arms Miller wrote ( p . Ei). " they are all tentaculated at alternate sides and resemble those of Pentacrinus Capnt Meduse." Similarly. the Anstins, thourh ther somtel Miller's tizure of the arms, remarked ( $\mathrm{p} . \mathrm{b} 0$ ). "The rays were n ) doubt tentaculated, although none of the specimens show the tentacula." It is certain. however, that tentseula or pimules are not present in this species.

The Ashmolean specimen figured by Miller showe? the base of the anal tube clearly: Miller, however, merely said (p. S7), "this [abdominal] interument is swollen out, and gives the specimen a singular appearance." The Ansrins regarded this aperture as the mouth. De Koninck and Le Hon* appear to have understood that it was comected with the anus: but neither there nor previous writers were anare that the opening was followed by an anal tube. The plates around the base of this tube were displavel br Miller in his dissected diagram, ris. 30. Wachsmuth and Epringer, however (Rev. I. s1. foomote 1) consider that "the four small plates, arranged in the ficure in a halt circle, are to represent the interradials (oral plates) [deltoids] in the dome, and not the plates of the rentral sac, as might be expected." This camot be right: the sjecimen, as pruted be tig. -99, possessed no deltoids: while in both figures the letter $I$ points to a larger and irregularly shaped plate which was most probably the madreporite.

Miller distinctly $(p, s i)$, and the Austins in more ambiguous language ( $\mathrm{p}, 50$ ). both stated that the articular facet of the radial was perforatel. To the question whether there are any species of cyatherimus that possess this character we shall recur later on: in the Carboniferous species $C^{C}$. plamus, at any rate, there is no doubt that in the radial facet the axial canal is not separated from the rentral groove.

[^2]
## Restriction of the Gendis.

Having determined the type species of the genus, we have now to consider various forms that have at different times been confused with Cyathocrimus.

It is unnecessary to say more about the separation of Puteriocrimus from Cyathocrinus, since it differs not only in the anal area but in the possession of pinumles.

Parisocrinus has arms like Cyathocrinus, bnt an anal area like Poteriocrinus; hence there is no real reason for confusing the two as has often been done.
J. Hall * extended the diagnosis of Cyathocrinus to include forms with a small quadrangular radianal. These forms, however, differ in other respects, besides the presence of a radianal, from Cyathocrinus, and doubtless belong to quite a different family-the Decadocrinidæ. In America such forms are represented by Barycrimus and Vusocrinus: in England it is the Silurian Botryocrinus that has been labelled Cyathocrinus $\dagger$; while a Carboniferons fossil that is probably a Barycrinus appears to have been considered a Poteriocrinus.

De Koninck and Le Hon $\ddagger$ gave a diagran of Cyatho. crinus in which the anal $x$ was represented as pentagonal and as supporting two small hexagonal plates. This was probably a mere slip, for neither in C. planus nor in $C$. mammillaris, the only species described by them, has the anal $x$ that shape. Some specimens of C. multilrachiatus from the Keokuk group of North America, that are in the British Muscum, appear to have an anal ar of this shape, but it is not typical of the genus. In fact the diagram given by De Koninck and Le Hon resembles, in this respect at least, that of Ottaracrimus alone among the Inadunata. They also give, under the head of Cyathocrinus, a diagram of the anal area of a Permian species, of which all we can say is that it certainly is not a Cyathocrinus.

The Anstins (op. cit. p. 66), in reviewing the species ascribed by different authors to this genms, said, "Not one of the so-called Cyathocrini of Murchison's Silurian System properly belong to the genus." This is perfectly true: it has long been known that $C$. tuberculatus is a liaxocrinus, that C. pyriformis (sic) is an Ichethyocrinus, and that $C$. ragosus is a Crotalocrinus; in fact these corrections were mate when the plates were reprinted to illustrate Murchison's

[^3]'Siluria' (edit. 3, 1859). The names Cyathocrinus gonioductylus, U. arthriticus, and C. capilluris, of 'I'he Silurian System' and 'Sihuria,' have had a longer existence; indeed it was not till 1878, when Angelin founded Gissocrinus, that there was any genus for the reception of those species. 'They, however, together with varions species to which J. W. Salter gave the Catalogue names of C. scoparius, C. squamiferus, C.sp. 1, and C.sp. 5, all appear to differ from Cyathocrinus in the possession of three infrabasals instead of five, and must therefore be referred to Gissocrinus.

Wachsmuth and Springer (Rev. I. 83, Proc. 1879, p. 306) said, "Paluocrinus Billings is not distinct from Cyathocrinus. The construetion of the calyx is identical." E. Billings founded Paleeocrinus in 'Figures and Descriptions of Canadian Organic Remains,' decade iv. (1859), on p. 24 , the type species being P.striatus (p. 25) ; he also referred to the genus P. angulatus (p. 45), P. rhombiferus (p. 45), and P. pulchellus (p. 46). Wachsmuth and Springer (Rev. III. 225; Proc. 1886, p. 149), after examining the type specimens, entirely changed their views with regard to Paleocrinus. They said, "The specimen of $P$. striatus, upon which the genus was proposed, is very imperfect, and may be a Carabocrinus, Dendrocrinus, or a new genus." P. angulatus was referred by them, without any doubt, to Dendrocrinus. Through the kindness of Dr. A. R. C. Selwyn and Mr. J. F. Whiteaves, the type specimens of Billings's four species, which are the only specimens known, are now before me. As regards Palreocrinus striatus, there is no doubt that it is not a Cyathocrinus; but a very careful examination has convinced me that neither is it a Carabocrinus or a Dendrocrinus. I should not, however, like to say whether it can really be regarded as an independent genus. P. angulatus also is no Cyathocrinus ; but I quite fail to see why it should be referred to Dendrocrinus : the radianal is small, apparently four-sided, and occupies a position more like that in Botryocrinus than that in any other Inadunate genus. The specimens of $P$. rhombiferus and $P$. pulchellus do not show the anal area; for the present therefore the reticence of Messrs. Wachsmuth and Springer concerning them is the best example to follow.

Among the genera that have been confused with Cyathocrinus there only remains one worthy of discussion, namely the genus Spherocrimus; and the history of this is somewhat peculiar. The only species of the genus is S. geometricus, a fairly well-known form from the Devonian rocks of both Gemmany and England. The species was founded by Gold-
fuss $\dagger$ and was referred by him to Cyatlocrinus. Since the diagnosis of that genus given by Goldfuss was simply a translation of Miller's, it follows that C. geometricus was regarded by its author as possessing but one plate in the anal area. Neither the figures of Goldfuss nor that given by J. Phillips in his 'Paleozoic Fossils of Cornwall \&c.,' pl. lx. fig. 41* (1841), show the anal plates. The Austins, in their Monograph, p. 61 (1845), likewise referred this species to Cyathocrinus, speaking as though there were one anal plate only, placed as in Cyathocrimus; in fact the diagram of Cyathocrinus on p. 58 is said to be taken from $C$. geometricus. C. F. Rcemer $\ddagger$ appears to have found Miller's description of Cyathocrinus plamus quite unintelligible, and consequently proposed to take Miller's sceont species, now known as Taxocrimus tuberculatus, as the type of Cyathocrinus, while he made C. geometricus the type of a new genus, Spherocrinus. From his diaguosis of Spllerocrinus we learn that he supposed the gemus to have only three infrabasals, while he again mentions, though with some doubt, the single anal plate. Romer's view was adopted by G. and F. Sandberger in 'Die Tersteinerungen des Rheinischen Schichtensystems in Naszau,' 1p. 389, 390 (Wiesbaden, 1850-1856). Joh. Miiller§ was the first to point out the correct structure of C. geometricus, describing a new variety of it, or possibly, as he regarded it, a closely allied species, under the name Poteriocrinus hemisphetricns. He showed that there were five infrabasals, and that the anal area possessed a radianal, an anal $x$, and another small plate (rt) on the right of anal $x$, resting on the radiamal. L. Schultze \|f placed all varieties of this species under the one head Poteriocrinus geometricus, and gave figures ('Taf. v. figs. $6 d, 6 f$ ) entirely confirming Miiller's description and figures of the anal area. It is odd that Messrs. Wachsmuth and Springer, who refer to both Miitler and Nchultze, should still have kept this species under Cyathocimus in the first part of their Revision, saying (p. Si"), "it has all the characters of C'yathocrimus, not only in the construction of the calyx, but also of the vault." In 1086, how crer (liev. 111. 222 ; 1'roc. 1. 150), they were inclined to
$\dagger$ 'I'etrefacta Germanie; vol. i. part 3, f. Ise, tab. lviii. fies $\bar{j} a, b$ (1.:31).
$\ddagger$ "Beitrage zur Kemutniss der fossilen Fanma des Hevonischen (iebirges an lihein," Verhandl. d. natmhist. Ver. d. prens. Vheinhande, $8 t h$ Jahry. ly, 36\%- $369:$ Bamn, 18.)l,
§ " Ceber" nene Echindenmen des Sifiler Nalkes." , Iblandl. k. Ak.

II "Monographie der Echind demen des Either Lialkes:" Wenkschr. k. Ah. Wiss. math.-nat. Cl. Bd. xal. (letit) p, il: Wiem. letio.
separate Spherrocrimus from Cycthocrinus; still this was not on accomit of any differences in the structure of the cup, but merely becanse the axial canal in the radials was separated by sterem from the ventral groove. To the question whether this character is of generic importance we shatl return immediately; for the present it is enongh to state that the description of Poteriocrinus geometricus given by Mailler and Schultze is proved correct by a large number of specimens in the British Museum. So long as the arms of this species are unknown one camot definitely say to which genus it belongs; it would probably be safer to place it in P'risocrimus, but we may be quite certain that it has nothing to do with Cyathocrinus.

A single species, litherto mondescribed, which may be regarded by many as a Cyathocrimus, has been separated therefrom and made the type of a new genus, monder the n:me Mastigocrinus loreus. The reasons for this have been so fully given in the preceding paper (antè̀, p. 200) that it would be waste of space to repeat them here. Snffice it to say that no Cyathocrimus has yet been found with a ventral sat, a tegmen or a stem like those of Mastigocrinus.

Wachsmuth and Springer (Rev. III. 326; Proc. 18S6, p. 150) have stated that the possession of a separate axial canal by the radials is a structure that "oceurs exclasively in species from the Silmian and Upper Deronian, never in the "arboniferous, neither in Cyuthocrimus nor other genera." "Whether," they continue, "all species of Cyathocrinus from Gothland and Dudley possess this structure, camot be ascertained from thic figures, but if they do, it may form the basis of a separation which seems to us very desirable." Now, even if we were safe in accepting this remarkably broad and dogmatic, thongh not very clear, statement, intermediate forms might still occur in the Lower and Middle Devonian. Even if they did not, so small a point would hardly be enough to differentiate two genera; for it is no rare thing to find the axial canal separate in one species of a genns, in one individual of a species, or in the earlier brachials of an individual, while it is merely a tongue from the ventral groove in others *. Moreover there do not appear to be any other constant or decided differences between the Carboniferous species of Cyathocrinus and such typical Sihurian species as C. acinotubus, C. remisus, and C. cisbycensis. As a matter of fact, however, even this difference does not exist, for the axial canal is not separate in the Silurian C. vallatus, althongh

[^4]it is separate in the closely allicd C. acinotulus; while it is separate in some individuals of C. striolutus from Gotland but not in others. Consequently it seems advisable for the prescut to retain both Silurian and Carboniferous species in one genus-Cyathocrinus-with the following

## Generic Diagnosis.

IBB 5, equal, pentagonal. BB 5, hexagonal except post. B, which is heptagonal and supports $x$. RR 5, shield-shaped, with facet circular or elliptical in outline, and occupying from less than $\frac{1}{3}$ to $\frac{2}{3}$ width of R. $x$ tetragonal to hexagonal, in line with RR, and about $\frac{2}{3}$ width of R. Arms long, simple, dichotomizing regularly several times; covering-plates alternating, in from 1 to 4 (or 5 ?) rows on either side. Ventral sac composed of usually hexagonal plates, either smooth or slightly folded. Tegmen consolidated by deltoids. Madreporite distinct.

## Description of tife Genus.

Dorsal Cup cyathiform ; with sides convex, straight or convexo-concave; with plates plane or tumid; surface smooth, shagreened, or slightly ridged eitlier radiately or concentrically. No pronounced axial folding.

JBB 5; pentagonal; lying at very various angles to stem, and varying vely greatly in height.

BB 5; hexagonal, except post.B, which is heptagonal. These also vary much in their proportions, but are usually large.

RR 5; of normal outline; as large as or larger than BB. Articular facet from a little less than $\frac{1}{3}$ to $\frac{2}{3}$ width of plate, usually about $\frac{1}{2}$; circular or elliptical in outline; directed outwards and upwards at very various angles; axial canal may or may not be separated from the rentral groove by stereom. Radial processes curve upwards and inwards to the deltoids.

Arms non-pinnulate, dichotomous; usually long and branching from 5 to 7 times (in Silurian species at least); with more ossicles in cach series towards the inner side of each dichotom. Rather stout, not tapering much, and with short ossicles (in Silurian species) ; or fine, tapering, with long ossicles (in Carboniferons species). Covering-plates well developed; either as solid, altemating series, or in rows of 2 to 5 (?) deep on either side of ventral groove.

13 Br from 1 to about $S$ : the mumber often varies greatly in


## DRAWINGS TO ILLUSTLATE TIE MORPHOLOGY OF CHATHOCRINUS:

1. 'The dissected cup; with the anterior radins on the right.
$\therefore$ Lomgitudinal median section through ten columnals of C: acinotubus. $s$, stereom of ossicle; $m$, matrix filling axial canal ; $c$, calcite taking the place of former ligament.
2. Transverse section throngh the stem of C. acinotuhus. Lettering as above. Figs. 2 aud है' are both reduced from camera-drawings of $\mathrm{E}(6004$ B.M. ; $\times$ 万 diam.
3. Transverse section through a brachial (III Br ) of C. acinotubus. Br, body of the ossicle; ax , axial canal; $r(f$, ventral grove: $c p$, covering-plates. Reduced and restored from camera-drawings of E 1367 , B. II. ; $\times 8$ diam.
4. A young individual of $C$. acinotubus (?). The extreme length of some of the brachials may be only apparent and due to the difficulty of seeing the sutures; it is, however, noticeable in the young of other genera. From an original drawing of M.P.(G. vii $\left.\right|_{\frac{4}{8}}$; nat. size.
i) a. A first primibrach of the same, showing that the axial canal is not yet separated from the rentral groove; $\times 3$ diam.
5. Ventral surface of the calyx of $C$ : plenus with ambulacrals and interambulacrals remored. $\Delta$, deltoids, and $M$, madreporite; these surround the peristome, and on their edres are seen indentations for the reception of the ambulacrals; $x$, anal. From E 6007, B.M. ; $\times \xlongequal{2}$ diam.
6. Veutral surface of the calrx of C'. mummillaris, Phill., with tegmen complete. $\Delta$, deltoids, in great part covered by ia, interambulacrals; ep, covering-plates, which are irreyular: $x$, anal, which is partly broken. From a drawing by Mr. Inollick of E. 2s8, B.M.; inat. size.
the arms of a single specimen ; but, in Silurian forms at all events, each species has usually its own limits.

Anal structures.-Anal $x$ from tetragonal to hexagonal ; it rests on the upper side of post. $B$, is in line with $R R$, and about $\frac{2}{3}$ their width. In typical species it supports, by its horizontal upper side, a smaller plate of similar shape, while on cither side of it, in the angle between it and the adjacent radial processes, rests a smaller plate of the tube ( $r \cdot t$ and $l t$ ). Sometimes $r$ t and $7 t$ appear not to touch $x$ at all, in which case $x$ is four-sided. Sometimes (e. g. C. multibrachiatus from the Keokuk) the upper side of $x$ is sloped downwards in such a manner that only $r$ touches the RR, in which case $x$ is roughly five-sided.

The Ventral Sac consists of more or less hexagonal plates, arranged in fairly regular longitudinal rows. It varies very greatly in size, but appears never to extend to the length of the arms. It is romuded or swollen, and has a rather large lumen. The plates are solid, often slightly tumid, and sometimes show a radiating structure, which may even exhibit itself in slight folding. In typical species of the genus the foldings are never pronounced, nor are the plates tramsversely elongate; in none are there slits or pores.

The Tegmen comprises 4 Deltoids and a Mad:eporite (p. 211, fig. 6). The Deltoids rest on the radial processes, and abut laterally on one another and on the Madreporite. The Aadreporite is usually cordiform and appears to be pierced by numerous pores.

Ambulacrals (I Amb) pass between the deltoids and madreporite to the actinal centre, in which region they are manally enlarged (and are by some writers considered to be the Orals).

Smaller Interambulacrals (i I Amb) are also often present, almost entirely covering the deltoids (p. 211, fig. 7).

The Stem is rarely preserved to any extent, but it seems never to have attained a very great length. It varies much in width; it is romd; with a usually quinquelobate lumen, sometimes of large size. Radial sutures have not been observed.

Columnals rather low, and alternating in thickness and height ; or very low and equal in size. They have radiating strie on their articular surface.

There are no Cirri on the stem.
'The Root has not yet come beneath my observation.

## Sipectes of the Genus.

Althongh the Austins in 1846 could deny the existence of

Cyathocrinus in Silurian roeks, we now know a consideralle number of Silurian species that may be refered to this genns. The Limestone Berls $d$ and $f$ of Gotland furnish nine species of ('yuthocrinus, as described in a paper read before the Royal Swedish Aeadeny of Science on Dec. 9th, 1891 *. The Niagara Limestone of America contains Cyathocrinus cora, Hall, C. wankoma, Hall, and C. Van Hornei, S. A. Miller; but other Silurian species from $N$. America appear to belong ratlier to Botryocrimus. The Wenlock Limestone of England has as yet presented us with only two species, viz. C. acinotulus, Ang., also found in Gotland ( $d$ and $f$ ), and a species here deseribed for the first time under the name $C$. vallutus.

As shown in the praper above referred to, the Cyathocrini of Gotland fall into three groups. The first of these groups has a stem of moderate width, with rather low and alternately ridged columnals and a more or less conical cup. Both our British species come into this group, and the following synopsis shows the main differences between the species of the group: -
a. Cup with struight sides.
a. Plates plane. grauular
(: Dience.
b. Plates axially folded aud striate
C. striolatus.
b. Cup with conrexo-concave sides, irregular.
c. Plates plane: smooth or pustulate ............... ('. ristlycensis.
d. Plates tumid ; smooth or shagreened ............. (: acinotulus.
c. Cup with conrex sides.
e. Plates plane; concentrically ridged and pustulate. . (! vallutus.

There are of course many other differences between the species than those shown in the above table, but they ean be gathered from the diagnoses.

## Cyathocimus acinotubus, Ang.

 (Pl. XIII. figs. 1-13.)1878. Cyathocrinus acinotubus, Angelin, Iconographia, p. 22, pl. xx. fig. $\overline{5}$.
1879. Cyathocrinus alutaceus (pars), Angelin, Iconographia, pl. ir. fig. 6 a.
1880. Cyathocrinus (sp. 6) monile, nom. nud., Salter, 'Catalogue of Cambrian and Silurian Fossils sec., Cambridge, p. 123.

[^5](yuthocrinus mimus, MS. Museum labels by J. WV. Salter:
Ciynthocrimus nodulosus, nom. nud. pars, i. e. Museum labels by J. W. Salter, but not the specimen said to be so referred to in C'at. Camb. Sil. Foss. p. 123.
The description, measurements, and diagrams of this species given in this paper are based entirely on British specimens, while in the Swedish paper reference is made throughout to Gotland speeimens. Thus any differences due to differing conditions may be more clearly appreciated.

The British specimens examined are the following:-
In the British Museum :
57480 , crown and half an inch of stem, seen from the right side, and showing the ventral sac crossing between the arms. Matrix a blue-grey shale. Dudley. From the collection of Mr . S. Allport, and formerly labelled C. nodulusus. (Pl. XIII. fig. 1.)
E 1450, crown, free from matrix, which was a very soft yellow shale; shows origin of ventral sac. Dudley. From the collection of Mr. J. Johnson. (Pl. XIII. fies. 2.)
L 5619, the distal end of a ventral sac, referred with hardly any doubt to this species. Dudley. From the collection of Mr. J. Gray, of Hagley. (Pl. XIII. fig. 6.)
57421 , crown with 8 to 10 eolumals; showing coveringplates well; with a rugose surface produced by weathering. Matrix a blne-grey shale. 'lividale, Dudley. (Pl. XIII. fig. 7.)
E 6002, crown with plates of ventral sac well marked, and with a radial facet exposed. Matrix a blue shale. Dudley. Johnson collection. (Ill Xlll. figs. S and 11.)
57142, arms with covering-plates and ventral groove well shown. ln limestone. Dudley. Gray collection. (Pl. XIll. fig. 10.)
5060 , a dorsal cup free from matrix; showing ralial facet. Dudley. Gray collection. (Pl. XIll. fig. 11.)
E 6003, dorsal cup, rather broken but very characteristic; showing shagreen ormanent. Vellowish matrix. Dudley. From the collection of Mr. J. Rofe. (Pl. AllI. tig. 1:2.)
E1367, ams and two thin transverse sections of same. Dudley. Rofe collection. (Kincutype, p. 211 , fig. 4.)
E 6004 , longitulinal and transerse thin sections of the anm.

Dudley. Rofe collection. (Kincotype, p. 2ll, figs. 2 and 3.)
57058 , basals and infrabasals. Dudley. Gray collection.
57059 , a crushed cup. Dutley. Gray collection.
57113, crushed crown and stem-fragment. Dudley. (iray collection.
57141 , a crown in hard blue shate. Dudley. Gray collection.
57149 , lower part of cup. Dudley. Gray collection.
57362 , rather small crown and 1 in . of stem. Limestonc. Tividale, Dudley. Gray collection.
57363, arms and upper part of cup. 'I'ividale, Dulley. Gray collection.
57364, crown and $1 \frac{1}{4} \mathrm{in}$. of stem. Limestone. Tividale, Dudley. Giray collection.
57365 , a small crown, with traces of colour-spots on arms. 'l'ividale. Gray collection.
E 5654, a weathered crown. Matrix a conglomerate of limestone in a yellow marly cement. Probably from Dormington in the Woolhope district (according to Mr. R. Etheridge, F.R.S.). Baber collection.

In the Muscum of Practical Creology, Jermyn Street:
vii $\int_{84}^{4}$, a young specimen, probably referable to this species, on a slab with Taxocrinus tuberculalus. (Zincotyp:, p. 211, figs. 5, 5 a.)

In the Woodwardian Museum, Cambridge :
a,526, 3 well-preserved and characteristic cups, labelled "Cyathocrinus mimus (n. sp.)." Dudley. Fletcher collection. (Pl. XIII. figs. 3, 4, 5.)
a/487, 2 or 3 specimens, one showing the covering-plates very well. Labelled "Cyathocrinus monile." Dudley:

## In the Oxford University Museum :

A crown showing the ventral sac appearing between the arms.
Malvern. Grindrod collection. (Pl. XIII. fig. 9.)
Arms showing the ventral surface and covering-plates. Malvern. Grindrod collection. (Pl. XIII. fig. $10 c$.)
In the collection of Charles Holcroft, Esq. :
206, arms with very large number of ossicles in internodes. Yellowish matrix, Upper Wenlock Limestone. Wren's Nest, Dudley.

For permission to examine and figure certain of the above specimens my thanks are due to Dr. Henry Woolward, F.R.S., the Director-General of the Geological Survey, Prof. T. $\mathrm{I}^{\mathrm{c}} \mathrm{K}$. Hughes, and Prof. A. H. Green; while a double measure of thanks is due to Mr. Holcroft for allowing me to retain his specimen for several months.

All the above specimens come from the Wenlock Limestone, and many of them come from the Upper Limestone; others, however, are donbtful, and the absence of information prevents us from assigning them to their exact horizon.

The trivial name of this species-derived from acinus, a berry, and tubus, a tube-probably refers to the blackberrylike appearance of the ventral sac.

## Specific Diagnosis.

Dorsal cup bowl-shaped, rather rounded at the base; plates tumid, and smooth or shagreened. Arms rather stont, with rounded ossicles; covering-plates long and conical, from 2 to $3 \frac{1}{2}$ to each brachial. Ventral sac large, slightly swollen above; its plates protuberant and rugose. Stem round, of moderate width, with alternate sized ossieles and a quinguelobate lumen.

## Desciniption of tile Species.

Dorsal Cup is in slape a broad cone, romded at the base and often projecting radially. The shape, though charac. teristic (Pl. X"lll. figs. $4, i$ ), is very variable in minor points. Thus, the infiabasals may project at a rather sharp ancie with the stom-axis, or may gently curse upwards. 'The plates, especially the basals, may be very tumid (11. Xill. fig. 2) ; but in a few cases the swelling is inconspicuous. The prejection of the radials also varies very much, as seen liy comparing fig. 1 with fig. 4 in Pl. XIlI. The eup sometimes varies on different sides both in height and in the sizes of its phates, the anterior rays as a rule being the larger in such cases. The average measurements of the cup, as deduced from five specimens, after corrections have heen made for compression, are:-Ileight 13 millim.; wilth below, 6.9 millim. ; width above, $1+5$ millim. Extremes of heicht moted are, in $57365 \mathrm{l}, \mathrm{M}$. $7 \cdot 2$ millim., and in E 6003 B. M. 20 millim. In these and subsequent measurements no accont is taken of the young epecimen at Jemman Street or of those in the Woodwardian Mnseum.

113l: 5, pentagomal and, as a male, almost cqual-sidul.

Average measurements, deduced from six specimens, with allowance for variation within the limits of an individal :Height $3 \cdot 5$ millim.; width below, $3 \cdot 7$ millim.; width above, 4.8 millim. Lixtreme measurements noted are, in 57365 and E $\mathrm{f}_{0} 00: 3$ respectively:- Height 2 millim. and 5 millim. ; wilth below, $2 \cdot 5$ millim. and $4 \cdot 25$ millim.; width above, 3 millim. and 6.8 millim. In E 14.5 , which is a mediunsized specimen, the height varies from 2.j millim. in r. ant. 11 to $: 3.2$ millim. in 1. post., 1. ant., and ant. I BB.

13B 5, hexagonal ; post. 3 heptagonal. Average measurements, deduced ats above :-Height 6.4 millim.; width below, $5 \cdot 8$ millim., width above, 6.7 millim. Extreme measurements, as above :-Height $3 \cdot 25$ millim. and 10 millim. ; width below, 3.5 millim. and 8 millim.; width above, $4 \cdot 2$ millim. and $5 \cdot 5$ millim. These measurements do not take the posterior basal into acconnt: that is always a little larger every way than the cthers; thas, in E 1450 , the measurements of the post. B and of the other BB are as follows:-Height 6 millin. and 5.5 millim.; width below, 5.75 millin. and $5 \cdot 4$ millim.; width above, 7 millim. and 6 millim.

IRR 5, shield-shaped, often projecting slightly in some or all of the rays. Average measurements, deduced as above, are :-Height to botton of facet 9.95 millim. ; width below, $13 \cdot 9$ millim.; width above, 14.9 millim.; width of facet 8.7 millim. Extreme measurements, as above, are :-Height 3 millim. and 8 millim. ; width below. $4 \cdot 2$ millim. and $9 \cdot 5$ millim.; width above, 4 millim. and 11.25 millim. ; width of facet $3 \cdot 25$ millim, and 6 millim. The adjacent sides are usually almost parallel in medium-sized specimens, and even converge upwards in small specimens. From the above measurements and others it appears that, while the average width of the facet is $577 \%$, or rather more than half, that of the radial, it is proportionally greater in small individuals, e. $g$. - 81 in 57365 , and less in large individuals, e. g. 53 in E 6003 . The facet is sometimes more to one side of the radial than the other; it is transversely elliptical in outline (Pl. Xlll. fig. 11). A fulcral ridge runs across, a little outside the long diameter, and in the centre of this ridge is the axial canal. The food-groove forms a wide depression on the imer side of the ellipse. Partly owing to the variation in the projection of the radials, the angle at which the facet is directed outwards varies considerably even in the same specimen. In the separate cops found at Klinteberg, in Gotland, which lend themselves to such measurement more

* These numbers are fractious of the width of the radial, not of a millimetre.
readily than the English specimens, the angle with the horizontal varies between $35^{\circ}$ and $85^{\circ}$.

The average measurements of the Gotland specimens are considerably greater than those of the English specimens, but no other difference is obvious.

In such very well-preserved specimens as E 6003 (Pl. XIII. fig. 12) a fine shagreen ornament is seen on the cup-plates; this, however, is usually worn away, and it may be doubted, from the smoothness of some otherwise perfect specimens, e.g. E 1450 , whether it was always present in life. In the fossils its place is occasionally taken by a rough surface, that presents much the same appearance to the naked cye, but which consists of irregular pits rather than elevations (Pl. Xlll. fig. 7). 'This roughess appears to be caused by weathering along the lines of the original intimate strncture of the phates. A specimen of this species, so weathered, was named by Angelin C. alutaceus.

The Arms dichotomize regularly, and lessen in thickness quite gradually, remaining rather stout even to their extremities. The ossicles are rounded and slightly swollen, and often might be described as moniliform, whence, no doubt, Salter's MS. names of C. monile and C. nodulosus ; sometimes, however, they are more even in thickness. In the proximal region of the arms the brachials are roughly circular in transverse section, but become more laterally compressed in the distal region (zincotype, p. 211, fig. 4). The axial canal is very distinct and is situated just about the middle of the ossicle. The ventral groove is a broad, curved, shallow depression (Pl. XIII. fig. 10 b ). In the young specimen (zincotype, fig. 5 a) the axial canal is not yet separated by stereon from the ventral groove, even in the primibrachs. 'The covering-plates are long, thick, and conical both in outline and longitudinal section (PI. XllI. figs. $10 \mathrm{u}, 10 \mathrm{c}$, and zincotype, fig. 4). They interluck, and run from two to three and a half to each brachial. They are sometimes rather flat and narrow, with parallel sides, at other times more rounded and conical ; the former variety is shown in the top letthand corner of Pl. XIII. fig. .2.

I Br from 3 to 5 . When there are 3 then $\mathrm{I} \mathrm{Br}_{2}$ is generally twice as high as $1 \mathrm{Br}_{1}$; when there are 4 then $\left[\mathrm{Br}_{2}\right.$ and $I \mathrm{Br}_{3}$ are usually much higher than the rest ; when there are 5 they are all more of a size. Three is by far the commonest momber. The number of I Br may vary in the several arms of an individual, but is generally the same.

11 Br from 2 to 4 . Is with $1 \mathrm{Br}, 3$ is the usual number, and $11 \mathrm{Br}_{2}$ is often higher than II $\mathrm{Br}_{1}$.

III Br from 3 to 7 . 'Tlie lower numbers are more usual, and the higher numbers, when they oceur, are in the branches on the imer side of the dichotom; thms, the left posterion am of E 14.50 (Pl. XIII. fig. 2) has III Br, comnting from left to right, -3.4..6.4*. Here, too, the second ossicle is sometimes higher than the first.

IV Br from 3 to 9. In this case the lower numbers are in the branches on the outside of the arm, the higher numbers on the inside of the dichotoms, and the middle numbers on the inside of the arm. 'This arrangement will be better moderstood from an actual example: in 57362 B . M. the quartibrachs run thus, from left to right-4.8. .9.7-6.6..7.5.

V Br from 3 to 11. Generally speaking these numbers follow the same sort of arrangement as in previous series, but the higher numbers are often finials, especially in rather young specimens. Thus in an arm of 57480 B . MI. (Pl. XIII. fig. 1), starting from the middle or inner side of the arm and passing towards the outer side on the right, the numbers run as follows, $f$ being placed against the finials-6.9.. $8 f .6 f-$ 6 . $9 f^{\prime}$. . $9 f$. 8 .

II Br from 2 to 14 . Nany of these are generally finials, and in young specimens even the lower numbers are finials. Otherwise the arrangement is much as in the quintibrachs.

VLI Br are only found in well-grown specimens. The numbers observed are 3 and 4. They are always finials; but it is of course conceivable that the arms might branch yet once more in an exceptionally well-favoured individual. It ${ }^{\prime}$, however, finials appear in any one series, it seems to be the rule that all of the ensuing series shall be finials; that is to say, in no single arm does one branch ever get more than one series ahead of the other.

The above numbers do not take account of 206 Holcroft, in which the serics are rather longer, 17 being seen in one internode.

Anal structures.-The measurements of anal $x$ in E 1450 are as follows:-Height $4 \cdot 5$ millim. ; width below, $3 \cdot 8$ millim. ; width above, 4.75 millim.; that is to say its width is about $3_{3}$ that of the adjacent radials (Pl. XIII. tig. 2). It supports a large proximal median plate and a smaller plate on either side (rt and $l t$ ). The latter plates rest partly on the adjacent radials.

The Ventral Sac is about half the length of the arms or

[^6]less ; it is rounded and somewhat swollen above (Pl. XIII. figs. $1,2,6,9)$. The plates of which it is composed are hexagonal in the proximal region, but distally they become irregular in outline. The size of the plates varies considerably, but their transverse diameter is as a rule between $1 \%$ and 25 millim., their vertical diameter being rather less. The plates are sometimes quite smoothly rounded or almost flat (Pl. XIII. fig. 1) ; sometimes they are slightly folded at the edges, the folds being at right angles to the sutures (Pl. Xlll. fig. 9) : in E 6002 this folding is very clearly marked, and at the same time it is quite obvious that there are no pores or slits within the folds (Pl. XIlI. fig. 8). In the separate distal end of a sac shown in Pl. XIII. fig. 6, the surface of the plates appears rather curionsly pitted ; this, however, is no doubt due to weathering, and may be compared with the roughness already alluded to (Pl. XIII. fig. 7).

The Tegmen is unknown.
The Stom (Pl. XIII. figs. 1 and 13 ; zincotype, p. 211, figs. 2 and 3) is round, composed of ossicles which alternate both in height and width with fair regularity. The following are a few measurements of the heights of the ossicles:-In E C004 (fig. 2, p. 211) the respective heights of the ossieles are about 1.16 millim. and 59 millim.; in 57362 B . M. they are 1 millim. and 555 millim. ; in $5736 \pm$ B. M., in a more proximal part of the stem, the ossicles are of three sizes with heights 1 millim., 75 millim., and $\cdot 2$ millim. The width of the stem is between 5 millim. and 7 nillim. The lumen is quinquelobate and its diameter is about $\frac{1}{3}$ that of the stem, or a little less. The articular surface of each ossicle is slightly concave, and is radiately striated. In the longitudinal section the space between the concave articular surfaces is filled with transparent calcite, while the lumen itself is filled with opaque matrix. This probably results from the fact that the interarticular ligaments decayed more gradually than the axial cord and its blood-vessels, and that, after the place of the latter had been taken by infilling ooze, they themselves were gradually replaced by the infiltration of carbonate of lime. We may now note, both in the longitudinal and tramsverse (fig. 3) sections, that the stereom of the ossicles is separated from the matrix in the canal by a thin film of calcite ; this too, then, must represent some lining membrane or ligament.

The base of the cup is often slightly excavated for the top columal ( Pl l. NIII. fig. 4).

Cyathocrimus vallatus, sp. n. (PI. XIII. figs. 14-1S.)
This species is based on three specimens, viz. :-
In the British Muscum :
(a) E 600.5, a somewhat worn cup in matrix. Gray collection. (Pl. XIII. fig. 18.)
(b) E 6006, a cup still more worn, especially in the distal region, and ground down at the sides; in matrix; seen from the right side. Gray collection. (Pl. XIII. fig. 15.)

In the Museum of Mason College, Birmingham :
(c) 170, a better preserved cup, showing articular facets for stem and arms; in matrix. (Pl. XIII. figs. 14, $16,17$.

These specimens all come from the Wenlock Limestone of Dudley, but the exact horizons and localities are uncertain. They are all in a rather yellowish shale, on the top of a limestone; it is therefore probable that they come from the Upper Wenlock Limestone.

For permission to figure the specimens in the British Museum I am indebted to Dr. Henry Woodward, F.R.S.; while for the loan of specimen $c$ Prof. C. Lapworth deserves my best thanks.

The trivial name vallatus, which means encircled by a -idge, refers to the characteristic ornament of the cup-plates.

## Specific Diagnosis.

Dorsal cup rather elongate, with convexly rounded sides; plates plane, with a strong concentric ridge at a short distance from the suture, and with irregular concentric or slightly radiating ornament on the inner part. Axial canal not separate. Stem with a large quinquelobate lumen. Arms, ventral sac, tegmen, and stem unknown.

## Remarks on the Species.

Dorsal Cup has a somewhat ovoid curve, bulging more in the region of the basals. The measurements of the specimens are as follows :-

|  | Heirgt <br> millim. | Width below. <br> millim. | Width above. <br> millim. |
| :---: | :---: | :---: | :---: |
| $($ a $) \ldots \ldots \ldots$ | 23 | $8(?)$ | $21(\%)$ |
| $(b) \ldots \ldots \ldots$ | 23 | $7 \cdot 2$. | $23(?)$ |
| $(c) \ldots \ldots \ldots$ | $19 \cdot 75$ | 8 | $21(?)$ |

I BB 5, pentagonal, rather wider than high.

|  | Height. millim. | Width below. millim. | Width above millim. |
| :---: | :---: | :---: | :---: |
| (a) | 6 | 4.75 | 7.7.5 |
| (b) | 55 | $4 \cdot 2$ | 7. |
|  | 5\% | 4 | 6.5 |

BB 5, hexagonal ; post.B, seen partially in $b$, heptagonal.

|  | Ieight. | Width below. | Width above. |
| :---: | :---: | :---: | :---: |
| (a) | ${ }_{12}$ | ${ }_{9} 9$ | 11\% |
| (b) | 102 | $8 \cdot 5$ | 11 |
|  | 10.75 | 8 | 105 |

The measurements of post.B are height 12 millim. in $b$; otherwise unknown.

RR 5, shicld-slraped; projecting in a slight bulge just below the articular facet, but not curving inwards much towards the radial processes. The facet is smoothly concave, with a very slight trace of a ridge; the axial canal is not separated from the ventral groove by stereom, but, together with it, forms a deep notch. Measurements are:-

|  | Height. | Width below. | Width above. | Width of facet. |
| :---: | :---: | :---: | :---: | :---: |
|  | millim. |  |  | millim. |
| (a) | $8 \cdot 8$ | 12.25 | 12 | 6 |
| (b) | $8 \cdot 5$ (?) | 10 | 105 | ? |
| (c) | $7 \times$ | 10:3 | 103 | 5 |

From which it appears that the sides of the radials are almost parallel and that the width of the facet is just half that of the radial. The facet is almost at right angles to the slope of the side and is therefore directed almost upward.

A portion of anal $x$ is preserved in $b$. It is about 6.5 millim. high and about 5 millim. wide below.

A portion of $r$ is also preserved in this specimen.
A marked concentric ridge surrounds all the cup-plates at a distance of about 75 millim. from the suture. There is also an inregular ormament on the plates, which tends to run in concentric circles (Pl. XIII. fig. 18), or may have a more radiate arrangement (Pl. XIII. fig. 14).

The characters of the Stem may be inferred from the bottom of thie cup, which shows a very large quinquelobate axial canal, shown in Pl. XHI. tig. 17, where it has a mean
width of $4 \cdot 2$ millim., or a little more than half the probable width of the stem. The facet for the stem is radiately striated. The stem was therefore probably like that of $\dot{C}$. acinotulus.

In the general shape of the cup and in its probable stemcharacters the species resembles the group of $C$. acinotubus. 'The shape of the cup is most like that of $C$. acinotubus, and indications of the ridge that is here so marked may also occasionally be seen in that species. The omament, however, more resembles that of $C$. visbycensis, var. monilifer. In the notehed facet and imperforate articulation this species differs from most Silurian Cyathocrini; but such a stage of development is occasionally presented by C. striolutus, which belongs to the same group. The large size of the cup is a character of no great importance, but affords a ready means of distinguishing the species in British collections.

## General Remarks on the Gevus.

The British specimens do not throw much light on the morphology of the genus, so that there are very few points to which attention need be here directed.

Growth of the cup.-From the varions measurements of the plates of C.acinotubus given on p. 217, it seems to follow that the facets of the radials, and consequently the arms, are wider in proportion in the young than in the adult; also that the radials are proportionally wider below in the young. This latter fact harmonizes with the statements already made in general terms by Messrs. Wachsmuth and Springer ** and Mr. S. A. Niller $\dagger$ as to the infrabasal and basal plates of Crinoids being more largely developed in the young than the other plates of the cup. That statement too, it may be mentioned, is confirmed by the measurements made of the present species. It is extremely interesting to note how closely the growth of this Silurian Crinoid agrees with the growth of the Pentacrinoid larva of a recent Antedon $\ddagger$. But it would be advisable to tabulate the measurements of large series of many other species before laying down any general laws as to the growth of Silurian Inadunate Crinoids.

The Axial Canal of the Arms.-So much was said about

[^7]this in the carlier part of the paper (p.209), that it is only necessary to point out that a Silurian species is here described, from specimens of mature growth, in which the axial canal is not separated from the ventral groove in the radial facet: in this point $U$. vallatus resembles Carboniferous species of Cyathocrinus. Further evidence, if such be needed, to show that the non-separation of the canal is merely a youthful character, and therefore also an archaic one, may be adduced from the young specimen at Jermyn Street (p. 211, fig. 5a). Conserquently it is not in itself a character very suitable for the diserimination of genera.

The Covering-plates of the Arms.-It does not appear from the present paper, lun it will be seen from the descriptions of the Gotland Cyathocrini that, although the number of these that goes to an ossicle is variable, yet there are limits to the variation, by the recognition of which we are often able to determine species when other means fail us.

In describing these structures, Messrs. Wachsmuth and Springer have mentioned (Rev. I. S4, Proc. 1879, p. 307) that the groove " is provided with two rows of from two to five successive movable plates, alternately arranged on opposite sides." It is, however, undoubtedly the ease, as shown by Pl. XIII. fig. 10, that the row on either side may be only one plate deep. It is quite true that there are sometimes two plates in the row, a small narrow plate lying at the base of and alternating with each of the regular conical coveringplates (sce Angelin, Iconogr. tab. xxvi. fig. 5b). Oceasionally too there occur small, usually rather irregular plates, over the middle line, between the two rows of regular covering-plates. This might make three or conceivably four rows on either side (see W. \& S. Rev. III. Proc. 1855, pl. iv. fig. 76 ). But in asserting that there were sometimes five rows it is possible that Messrs. Wachsmuth and Springer were misted by Angelin's tab. xxvi. fig. 4, which represents the covering-plates of $C$. ramosus (wrongly called there $C$. inngimanus) ; for these plates are marked by transverse lines that divide them into five parts, and produce the impression that each covering-plate is composed of five ossicles, which is not really the case.

The T'entral Sac.-Messrs. Wachsmuth and Springer stated in 1879 (Rev. I. S4) that pores and slits had been observed in the ventral sac of Silurian species of Cyathocrinus. This statement has never been withdrawn by them, though in their recent paper on the Perisomic Plates* they seem to imply

* Proc. Acad. Nat. Sci. Philadelphia (1890). Part III. See p. 360 , February 189.
that the ventral sac of the Cyathocrinida generally is not perforate. It is possible that they were formerly misled by the erroneons reference to Cyathocrinus of many species of Gissocrinus, Botryocrinus, and such forms in which the ventral sac often appears at first glance to be provided with slits between the edges of the plates. At any rate none of the sacs of the Silurian Cyathocrini that have come under my observation appear to possess either pores or slits. Deceptive appearances are sometimes produced by weathering, as described under C. acinotubus (p. 220) ; and sometimes the edges of folded plates are filled with matrix which everyone does not take the trouble to elear away.

The Tegmen.-As none of the British Silurian specimens show the tegmen it is advisable to defer discussion of the many important problems presented by it. Original drawings of two Carboniferous specimeus are, however, given (p. 211) in illustration of the description of the genus. The one (fig. 6) shows the deltoids and the madreporite surrounding the peristome; the other (fig. 7) shows how both deltoids and peristome may be covered by ambulacrals and interambulacrals, though portions of the deltoids are still seen peeping out from beneath the interambulaerals. The questions to be decided are these:-What are the true homologies of the plates here called deltoids? Is the madreporite serially homologous with the deltoids? Or is the posterior deltoid represented by two plates, one ou either side of the madreporite? Are the plates that cover over the peristome, which are sometimes large and fairly regular, sometimes small and irregular, orals or merely large ambulacrals?

## EXPLANATION OF PLATE NIII.

## Cyathocrinus acinotubus.

Fig. 1. 57480, B. M. A crown with portion of stem, seen from the right side. The ventral sac seen crossing between the arms. Drawn with the camera by Mr. Hullick. (Nat. size.)
Fig. . . E 1450 B. M. Crown seen from posterior. Drawn with the camera by Mr. Hollick. (Nat. size.)
Fig. 3. a $5 \geqslant 2$, Woodwardian Museum. A small cup, seen from below, with one or two columnals attached. Note large size of IBB. From a drawing by Mr. Edwin Wilson, artist to the Cambridge Engraving Co. (Nat. size.)
Fig. 4. a/520 © Woodwardian Museum. Cup seen slantwise from below, showing projection of radials. Une rery pentagonal columnal seen inserted in the IBB circlet. From a drawing by Mr. E. Wilson. (Nat. size.)
Fig. 5. aj 526 , Woodwardian Museum. Cup seen from posteriur, showing $x$ and $l t$. From a drawiug by Mr. E. Wilson. (Nat. size.)

Fig.6. E 5619, B. M. A rentral sac, slightly weathered. From a drawing by Mr. IIollick. ( $\times 2$ diam.)
Fig. 7. 57421, B. MI. A small portion of the weathered surface of a radial. From a drawing by Mr. Hollick. ( $\times 10$ diam.)
Fig. 8. E fi002, B. M. A plate from the proximal region of the ventral sac, to show the folding of the edges. Drawn on stone by the anthor. ( $\times 3$ diam.)
Fig. 9. Grindrod Collection, Oxford. The distal end of the ventral sac appearing between the branches of the anterior arm. Drawn on stone by the author. (Nat. size.)
Fig. 10 a. 57142, I3. M. Three brachials seen from the side, showing the covering-plates open.
b. 57122 , B. M. The ventral surface of three brachials, the covering-plates removed and the ventral groove exposed.
c. Grindrod Collection. The rentral surface of three brachials, the covering-plates in situ and closed.

All from drawings by the author. ( $\times$ ? dian.)
Fig. 11. 57060 and E $600-1$, B. M. A radial showing the articular facet, combined from the evidence of these two specimens. From a drawing by the author. ( $\times$ ? diam.)
Fig. 12. E $600: 3$, 13. M. Portion of surfac of a radial, showing shagreen ornament. From a drawing by Mr. IIollick. ( $\times 10$ diam. $)$
Fig. 13. The articular surface of a stem-ossicle from the evidence of numerous specimens. From a drawing by the author. $(\times 3$ dian.)

Cyathocrinus vallatus, sp. n.
Fïg. 14. 170, Mason College. A radial seen obliqnely from abore, to show articular facet; also showing ornament. From a drawing by Mr. Mollick. ( $\times 2$ diam.)
Fig. 15. E 6006, 13. MI. A cup seen from the right side, showing post. I3 and $x$ on the left; ontline restored. From drawings by Mr. Hollick and the author. (Nat. size.)
Fig. 16. 170, Mason College. A cup: orientation uncertain. From a drawing by Mr. Mollick. (Nat. size.)
Fig. 17. The articular facet for the stem of the same specimen. From a drawing by Mr. IIollick.
rig. 18. E 6005, B. M. A much weathered cup; orientation uncertain. From drawings by Mr. 11 ollick and the author. (Nat. size.)

## XXXIII. - On some Spiders from the Anduman Islands collected by E. IV'. Oates, Esq. By Prof. 'I'. ''horell.

Our knowledge of the arachological fauma of the Andaman Islands is as yet exceedingly limited; so far as I know M. Engène Simon is the only author who has, in a recentlypublished paper \%, enumerated and described any spiders

* "Études sur les Arachn. de l'Asie mérié, faisnut parie des collections de lohdian Museum (Calcutta).-II. Arachn. recneillis aux iles Andaman par M. R. I). Oldham," in domm. of the Isiatic Soe of Bengent, liii. part iı, no. 3 (180\%).


[^0]:    * "Description of some new Fossil Encrini and Pentacrini, lately discovered in the neighbourhood of Bristol," 'rans. Geol. Soc. 1st ser. rol. v. part 1, pp. 87-94, with pls. ii.-r. : London, 1819. See pl. iii. fig. 1.
    $\dagger$ Proc. West Riding Yorksh. Geol. and Polyt. Soc. vol. vi. (n. s., vol. i.) part iv. pp. 242-253, pl. x. (1875), 1878.

[^1]:    * See 'The West of England Jourv. Sci. and Lit.,' no. 1, pp. f, 19, 9s, and 252 : Bristol, Jan. 1835.
    $\dagger$ L. Agassiz, 'Poissons Fossiles' f' livr., feuilleton additionel. p. is (1835).

[^2]:    * Recherches sur les Crinciles du Terrain Carbonitère de la Belsique,'
    

    Ann. GU. Mag. N. Hist. Ser. 6. Vol. is.
    15

[^3]:    
    $\dagger$ "1hrit. Foss. Criu., V.," Imm. A' Mag. Nat. Hist. ser. di, vol. vii. p. 305, May 1-91; and VI., p. 1-9, anted.
    f' leederehes sur les Crimodes de.,' pp, in et smy. (1-24).

[^4]:    * See "Brit. Foss. Crin.-V. Botryocrinus," Amn. \& Mag. Nat. Hist. ser. G, vol. vii. p. 392, May 1891.

[^5]:    * F. A. Bather, "The Crinoidea of Gotland, Part I.," Kigl. Svenska Vet,-Aled. IIandl. Bd. xxiv. no. 8. In the press.

[^6]:    * In this and in the ensuing examples the peculiar spacing of the numbers is an attempt to represent the bilateral symmetry of the arm: the two brauches of each dithotom are separated by only a siugle fullstop.

[^7]:    * Rev. I. 19, Proc. 1879, p. 242.
    $\dagger$ "Structure \&c. of American Palæozoic Crinoids into Families," Amer. Geol. vol. vi. p. 28.2 , line 11, Nov. 1890 ; and 'American Geology and Palæontologr,' p. 212, Cincinnati, 1889.
    $\ddagger$ See W. B. Carpenter, "Researches on the Structure, Physiology, and Development of Antedon (Comatula, Lamk.) rosaceus," Phil. Trans. 1866, pp. 727 , 29, 781.

